Энергия атф используется в мышце для. Атф - что это такое, описание и форма выпуска лекарства, инструкция по применению, показания, побочные эффекты

АТФ - энергетическая основа движений человека. АТФ расщепляется во время движения, синтезируется во время отдыха. В бодибилдинге используется 3 режима воспроизведения АТФ: аэробный механизм, гликоген и молочная кислота, фосфагенный механизм. Помимо воспроизведения АТФ человеком, есть способы получения АТФ из вне, например способ получения АТФ внутримышечно.

АТФ в мышцах

Аденозин трифосфат (АТФ, он же аденин) - молекула, служащая энергетической основой всех биологических процессов человеческого организма. АТФ в мышцах используется для осуществления движений. Мышечное волокно сокращается под действием расщепления аденина, после этого высвобождается определенное количество энергии, которое идёт на сокращение мышц. В человеческом организме аденозин трифосфат получается из инозина (торговая марка: , инозин, рибонозин ит.д.).

Если при сокращении мышц АТФ расщепляется, то в моменты отдыха, наоборот - синтезируется. По большому счёту, АТФ в мышцах представляет из себя ни что иное, как биологическую батарею, которая запасает энергию, когда в ней нет необходимости. С другой стороны, освобождая её, если возникает потребность в энергии.

Роль атф в энергетическом обмене очень велика. Без атф человеческий организм не смог бы осуществлять процесс жизнедеятельности.Человек нуждается в энергетическом снабжении метаболизма, транспортировке различных молекул ит.д. Сокращение мышц не возможно без энергии, получаемой благодаря АТФ.

Структура АТФ

Три компоненты входят в структуру АТФ :

1.Трифосфат

Если рассматривать молекулу АТФ, то в ее центре располагается молекула рибозы, ее конец является началом для аденина, что хорошо показано на рисунке выше. Трифосфат находится с противоположной стороны от рибозы. АТФ заполняет протеиносодержащее волокно, которое называется миозином . Это - фибриллярный белок, являющийся одним из основных компонентов сократительных волокон мышц. Миозин отвечает за формирование всех мышечных клеток. Одно из главных свойств миозина - способность расщеплять АТФ.

Воспроизведение АТФ

Количество АТФ не безгранично. В среднем через несколько секунд движения его количество исчерпывается. Значит, нужно восполнить его количество. В человеке заложены специальные механизмы, которые занимаются воспроизведением структур АТФ:

  • Аэробное дыхание
  • Гликоген и молочная кислота
  • Фосфагенная система

Данные механизмы энергообмена включаются в работу в строго определенной время. В бодибилдинге, где чаще всего практикуются «многоповторы», используются все 3 системы. А вот в скоростно-силовых видах спорта преобладают вторая и третья.


В бодибилдинге крайне интенсивные нагрузки. Поскольку самый мощный источник ресинтеза атф в бодибилдинге - это креатин-фосфат(третий механизм синтеза АТФ), то повышение его количества приведет к тому, что человек сможет тренироваться интенсивно более длительное время.

АТФ в процессе сокращения поставляет необходимую энергию для образования актомиозинового комплекса, а в процессе расслабления мышцы - обеспечивает энергией активный транспорт ионов кальция в ретикулум. Для поддержания сократительной функции мышцы концентрация АТФ в ней должна находиться на постоянном уровне от 2 до 5 ммоль/кг.

Поэтому при мышечной деятельности аденозинтрифосфорная кислота должна восстанавливаться с той же скоростью, с какой расщепляется в процессе сокращения, что осуществляется отдельными биохимическими механизмами ее ресинтеза.

Энергетические источники ресинтеза АТФ в скелетных мышцах и других тканях - богатые энергией фосфатсодержащие вещества. Они присутствуют в тканях (креатинфосфат, аденозиндифосфат) или образуются в процессе катаболизма гликогена, жирных кислот и других энергетических субстратов. Кроме того, в результате аэробного окисления различных веществ возникают энергии протонного градиента на мембране митохондрий.

Ресинтез аденозинтрифосфата может осуществляться в реакциях без участия кислорода (анаэробные механизмы ) или с его участием (аэробный механизм ). В обычных условиях ресинтез АТФ в мышцах происходит преимущественно аэробным путем. При напряженной физической работе, когда доставка кислорода к мышцам затруднена, включаются и анаэробные механизмы ресинтеза АТФ. В скелетных мышцах человека выявлены три вида анаэробных и один путь аэробного восстановления аденозинтрифосфата.

К анаэробным механизмам относятся креатинфосфокиназный (фосфогенный или алактатный), гликолитический (лактатный) и миокиназный механизмы.

Аэробный механизм ресинтеза АТФ заключается в окислительном фосфорилировании, протекающем в митохондриях, количество которых в скелетных мышцах при аэробных тренировках существенно увеличивается. Энергетическими субстратами аэробного окисления служат: глюкоза, жирные кислоты, частично аминокислоты, а также промежуточные метаболиты гликолиза (молочная кислота) и окисления жирных кислот (кетоновые тела).

Каждый механизм имеет разные энергетические возможности, которые оцениваются по следующим критериям: максимальная мощность, скорость развертывания, метаболическая емкость и эффективность .

Максимальная мощность - это наибольшая скорость образования АТФ в данном метаболическом процессе. Она лимитирует предельную интенсивность работы, выполняемой за счет используемого механизма.

Скорость развертывания - время достижения максимальной мощности данного пути ресинтеза адено-зинтрифосфата от начала работы.

Метаболическая емкость - общее количество АТФ, которое может быть получено в используемом механизме ресинтеза АТФ за счет величины запасов энергетических субстратов. Емкость лимитирует объем выполняемой работы. Метаболическая эффективность - это та часть энергии, которая накапливается в макроэргических связях аденозинт-рифосфата. Она определяет экономичность выполняемой работы и оценивается общим значением коэффициента полезного действия, представляющего отношение всей полезно затраченной энергии к ее общему количеству, выделенному при текущем метаболическом процессе.

Общий коэффициент полезного действия при преобразовании энергии метаболических процессов в механическую работу зависит от двух показателей:

  • эффективности фосфорилирования;
  • эффективности хемомеханического сопряжения (эффективности преобразования АТФ в механическую работу).

Эффективность хемомеханического сопряжения в процессах аэробного и анаэробного метаболизма примерно одинакова и составляет 50%.

Эффективность фосфорилирования наивысшая в алактатном анаэробном процессе - около 80%, и наименьшая в анаэробном гликолизе - в среднем 44%. В аэробном же процессе она составляет примерно 60%.

Таким образом, анаэробные механизмы имеют большую максимальную мощность и эффективность образования АТФ, но короткое время удержания и небольшую емкость, из-за малых запасов энергетических субстратов. Например, максимальная мощность креатинфосфокиназной реакции развивается уже на 0,5-0,7 с интенсивной работы и поддерживается 10-15 с у нетренированных людей идо 25-30 су высокотренированных спортсменов и составляет 3,8 кДж/кг в минуту.

Гликолитический механизм ресинтеза АТФ отличается невысокой эффективностью. Большая часть энергии остается в молекулах образующейся молочной кислоты. Концентрация последней находится в прямой зависимости от мощности и продолжительности работы, и может быть выделена только путем аэробного окисления.

Гликолиз - это основной путь энергообразования в упражнениях субмаксимальной мощности, предельная продолжительность которых составляет от 30 с до 2,5 мин (бег на средние дистанции, плавание на 100 и 200 м и др.).

Гликолитический механизм энергообразования служит биохимической основой специальной скоростной выносливости организма.

Миокиназная реакция происходит в мышцах при значительном увеличении концентрации АДФ в саркоплазме. Такая ситуация возникает при выраженном мышечном утомлении, когда другие пути ресинтеза уже не возможны.

Таким образом, анаэробные механизмы являются основными в энергообеспечении кратковременных упражнений высокой интенсивности .

При адаптации к интенсивным нагрузкам повышается активность ферментов анаэробных механизмов и запасов энергетических механизмов: содержание креатинфосфата в скелетных мышцах может увеличиваться в 1,5-2 раза, а содержание гликогена - почти в 3 раза.

Обновлено: 20 июня 2013 Просмотров: 83818

За счет чего человек двигается? Что такое энергетический обмен? Откуда берется энергия для организма? На сколько ее хватит? При какой физической нагрузке, какая энергия расходуется? Вопросов как видите много. Но больше всего их появляется, когда начинаешь эту тему изучать. Попробую облегчить самым любопытным жизнь и сэкономить время. Поехали…

Энергетический обмен – совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии.

Для обеспечения движения (актиновых и миозиновых нитей в мышце) мышце требуется АденозинТриФосфат (АТФ). При разрыве химических связей между фосфатами выделяется энергия, которая используется клеткой. При этом АТФ переходит в состояние с меньшей энергией в АденозинДиФосфат (АДФ) и неорганического Фосфора (Ф)

Если мышца производит работу, то АТФ постоянно расщепляется на АДФ и неорганический фосфор выделяя при этом Энергию (порядка 40-60 кДж/моль). Для продолжительной работы необходимо восстановление АТФ с такой скоростью, с какой это вещество используется клеткой.

Источники энергии, используемые при кратковременной, непродолжительной и продолжительной работе различные. Образование энергии может осуществляться как анаэробным (безкислородным), так и аэробным (окислительным) способом. Какие качества развивает спортсмен тренируясь в аэробной или анаэробной зоне я писал в статье « «.

Выделяют три энергетические системы, обеспечивающие физическую работу человека:

  1. Алактатная или фосфагенная (анаэробная). Связана с процессами ресинтеза АТФ преимущественно за счет высокоэнергетического фосфатного соединения – КреатинФосфата (КрФ).
  2. Гликолитическая (анаэробная). Обеспечивает ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена и/или глюкозы до молочной кислоты (лактата).
  3. Аэробная (окислительная). Возможность выполнения работы за счет окисления углеводов, жиров, белков при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

Источники энергии при кратковременной работе.

Быстродоступную энергию мышце дает молекула АТФ (АденозинТриФосфат). Этой энергии хватает на 1-3 секунды. Этот источник используется для мгновенной работы, максимальном усилии.

АТФ + H2O ⇒ АДФ + Ф + Энергия

В организме АТФ является одним из самых часто обновляемых веществ; так, у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000-3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

Пополняется АТФ за счет КрФ (КреатинФосфат), это вторая молекула фосфата, обладающего высокой энергией в мышце. КрФ отдает молекулу Фосфата молекуле АДФ для образования АТФ, обеспечивая тем самым возможность работы мышцы в течение определенного времени.

Выглядит это так:

АДФ+ КрФ ⇒ АТФ + Кр

Запаса КрФ хватает до 9 сек. работы. При этом пик мощности приходится на 5-6 сек. Профессиональные спринтеры этот бак (запас КрФ) стараются еще больше увеличить путем тренировок до 15 секунд.

Как в первом случае, так и во втором процесс образования АТФ происходит в анаэробном режиме, без участия кислорода. Ресинтез АТФ за счет КрФ осуществляется почти мгновенно. Эта система обладает наибольшей мощностью по сравнению с гликолитической и аэробной и обеспечивает работу «взрывного» характера с максимальными по силе и скорости сокращениями мышц. Так выглядит энергетический обмен при кратковременной работе, другими словами, так работает алактатная система энергообеспечения организма.

Источники энергии при непродолжительной работе.

Откуда берется энергия для организма при непродолжительной работе? В этом случае источником является животный углевод, который содержится в мышцах и печени человека — гликоген. Процесс, при котором гликоген способствует ресинтезу АТФ и выделению энергии называется Анаэробным гликолизом (Гликолитическая система энергообеспечения).

Гликолиз – это процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты (Пируват). Дальнейший метаболизм пировиноградной кислоты возможен двумя путями - аэробным и анаэробным.

При аэробной работе пировиноградная кислота (Пируват) участвует в обмене веществ и многих биохимических реакциях в организме. Она превращается в Ацетил-кофермент А, который участвует в Цикле Кребса обеспечивая дыхание в клетке. У эукариот (клетки живых организмов, которые содержат ядро, то есть в клетках человека и животных) Цикл Кребса протекает внутри митохондрии (МХ, это энергетическая станция клетки).

Цикл Кребса (цикл трикарбоновых кислот) – ключевой этап дыхания всех клеток использующих кислород, это центр пересечения многих метаболических путей в организме. Кроме энергетической роли, Циклу Кребса отводится существенная пластическая функция. Участвуя в биохимических процессах он помогает синтезировать такие важные клетки-соединения, как аминокислоты, углеводы, жирные кислоты и др.

Если кислорода недостаточно , то есть работа проводится в анаэробном режиме, тогда пировиноградная кислота в организме подвергается анаэробному расщеплению с образованием молочной кислоты (лактата)

Гликолитическая анаэробная система характеризуется большой мощностью. Начинается этот процесс практически с самого начала работы и выходит на мощность через 15-20 сек. работы предельной интенсивности, и эта мощность не может поддерживаться более 3 – 6 минут. У новичков, только начинающих заниматься спортом, мощности едва ли хватает на 1 минуту.

Энергетическими субстратами для обеспечения мышц энергией служат углеводы – гликоген и глюкоза. Всего же запаса гликогена в организме человека на 1-1,5 часа работы.

Как было сказано выше, в результате большой мощности и продолжительности гликолитической анаэробной работы в мышцах образуется значительное количество лактата (молочной кислоты).

Гликоген ⇒ АТФ + Молочная кислота

Лактат из мышц проникает в кровь и связывается с буферными системами крови для сохранения внутренней среды организма. Если уровень лактата в крови повышается, то буферные системы в какой-то момент могут не справиться, что вызовет сдвиг кислотно-щелочного равновесия в кислую сторону. При закислении кровь становится густой и клетки организма не могут получать необходимого кислорода и питания. В итоге, это вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного торможения их активности. Снижается скорость самого гликолиза, алактатного анаэробного процесса, мощность работы.

Продолжительность работы в анаэробном режиме зависит от уровня концентрации лактата в крови и степенью устойчивости мышц и крови к кислотным сдвигам.

Буферная емкость крови – способность крови нейтрализовать лактат. Чем тренированнее человек, тем больше у него буферная емкость.

Источники энергии при продолжительной работе.

Источниками энергии для организма человека при продолжительной аэробной работе, необходимые для образования АТФ служат гликоген мышц, глюкоза в крови, жирные кислоты, внутримышечный жир. Этот процесс запускается при длительной аэробной работе. Например, жиросжигание (окисление жиров) у начинающих бегунов начинается после 40 минут бега во 2-й пульсовой зоне (ПЗ). У спортсменов процесс окисления запускается уже на 15-20 минуте бега. Жира в организме человека достаточно для 10-12 часов непрерывной аэробной работы.

При воздействии кислорода молекулы гликогена, глюкозы, жира расщепляются синтезируя АТФ с выделением углекислого газа и воды. Большинство реакций происходит в митохондриях клетки.

Гликоген + Кислород ⇒ АТФ + Углекислый газ + Вода

Образование АТФ с помощью данного механизма происходит медленнее, чем с помощью источников энергии, используемых при кратковременной и непродолжительной работе. Необходимо от 2 до 4 минут, прежде чем потребность клетки в АТФ будет полностью удовлетворена с помощью рассмотренного аэробного процесса. Такая задержка вызвана тем, что требуется время, пока сердце начнет увеличивать подачу крови обогащенной кислородом мышцам, со скоростью необходимой для удовлетворения потребностей мышц в АТФ.

Жир + Кислород ⇒ АТФ + Углекислый газ + Вода

Фабрика по окислению жира в организме является самой энергоемкой. Так как при окислении углеводов, из 1 молекулы глюкозы производится 38 молекул АТФ. А при окислении 1 молекулы жира – 130 молекул АТФ. Но происходит это гораздо медленнее. К тому же для производства АТФ за счет окисления жира требуется больше кислорода, чем при окислении углеводов. Еще одна особенность окислительной, аэробной фабрики – она набирает обороты постепенно, по мере увеличения доставки кислорода и увеличения концентрации в крови выделившихся из жировой ткани жирных кислот.

Больше полезной информации и статей вы можете найти .

Если представить все энергообразующие системы (энергетический обмен) в организме в виде топливных баков, то выглядеть они будут так:

  1. Самый маленький бак – КреатинФосфат (это как 98 бензин). Он находится как бы ближе к мышце и запускается в работу быстро. Этого «бензина» хватает на 9 сек. работы.
  2. Средний бак – Гликоген (92 бензин). Этот бак находится чуть дальше в организме и топливо из него поступает с 15-30 секунды физической работы. Этого топлива хватает на 1-1,5 часа работы.
  3. Большой бак – Жир (дизельное топливо). Этот бак находится далеко и прежде, чем топливо начнет поступать из него пройдет 3-6 минут. Запаса жира в организме человека на 10-12 часов интенсивной, аэробной работы.

Все это я придумал не сам, а брал выжимки из книг, литературы, интернет-ресурсов и постарался лаконично донести до вас. Если остались вопросы — пишите.

Энергия АТФ используется во время деятельности скелетной мыш­цы для 3-х процессов:

■ работы K + -Na + -насоса, обеспечивающего постоянство градиента концентраций ионов K + и Na + по обе стороны мембраны;

■ процесса скольжения актиновых и миозиновых нитей, ведущего к укорочению миофибрилл;

■ работы кальциевого насоса, необходимого для расслабления во­локна.

При работе мышц химическая энергия превращается в механиче­скую, т.е. мышца является химическим двигателем, а не тепловым. Для процессов сокращения и расслабления мышц потребляется энергия АТФ. Расщепление АТФ с отсоединением одной молекулы фосфата и об­разованием аденозиндифосфата (АДФ) сопровождается выделением 10 ккал энергии на 1 моль: АТФ = АДФ + Ф + Эн. Однако запасы АТФ в мышцах невелики (около 5 ммоль/л). Их хватает лишь на 1 - 2 с работы. Количество АТФ в мышцах не может изменяться, т.к. при отсутствии АТФ в мышцах развивается контрактура (не работает кальциевый насос и мыш­цы не в состоянии расслабляться), а при избытке - теряется эластичность.

Для продолжения работы требуется постоянное восполнение запа­сов АТФ. Восстановление АТФ происходит в анаэробных условиях - за счет распада креатинфосфата (КрФ) и глюкозы (реакции гликолиза), в аэробных условиях - за счет реакций окисления жиров и углеводов.

Быстрое восстановление АТФ происходит в тысячные доли секун­ды за счет распада КрФ: АДФ + КрФ = АТФ + Кр. Наибольшей эффектив­ности этот путь энергообразования достигает к 5 - 6-й секунде работы, но затем запасы КрФ исчерпываются, т.к. их также немного (около 30 ммоль/л).

Медленное восстановление АТФ в анаэробных условиях обеспечивается энергией расщепления глюкозы (выделяемой из гликогена) – реакцией гликолиза с образованием в конечном итоге молочной кислоты (лак-тата) и восстановлением двух молекул АТФ. Эта реакция достигает наибольшей мощности к концу 1- й минуты работы. Особое значение этот путь энергообразования имеет при высокой мощности работы, которая продолжается от 20 с до 1 – 2 мин (например, при беге на средние дистанции), а также при резком увеличении мощности более длительной и менее мощной работы (финишные ускорения при беге на длинные дистанции) и при недостатке кислорода во время выполнения статической работы. Ограничение использования углеводов связано не с уменьшением запасов гликогена (глюкозы) в мышцах и в печени, а с угнетением реакции гликолиза избытком накопившейся в мышцах молочной кислоты.

Реакции окисления обеспечивают энергией работу мышц в условиях достаточного поступления в организм кислорода, т.е. при аэробной работе длительностью более 2 – 3 мин. Доставка кислорода достигает необходимого уровня после достаточного развертывания функций кислородтранспортных систем организма (дыхательной, сердечно-сосудистой систем и системы крови). Важным показателем мощности аэробных процессов является предельная величина поступления в организм кислорода за 1 мин - максимальное потребление кислорода (МПК). Эта величина зависит от индивидуальных возможностей каждого человека. У нетренированных лиц в 1 мин поступает к работающим мышцам около 2,5 – 3 л О 2 , а у высококвалифицированных спортсменов (лыжников, пловцов, бегунов-стайеров и др.) достигает 5 – 6 л и даже 7 л в 1 мин.

При значительной мощности работы и огромной потребности при этом в кислороде основным субстратом окисления в большинстве спортивных упражнений являются углеводы, т.к. для их окисления требуется гораздо меньше кислорода, чем при окислении жиров. При использовании одной молекулы глюкозы (С 6 Н 12 О 6), полученной из гликогена, образуется 38 молекул АТФ, т.е. аэробный путь энергообразования обеспечивает при том же расходе углеводов во много раз больше продукции АТФ, чем анаэробный путь. Молочная кислота в этих реакциях не накапливается, а промежуточный продукт – пировиноградная кислота – сразу окисляется до конечных продуктов обмена – СО 2 и Н 2 О.

В качестве источника энергии жиры используются в состоянии двигательного покоя, при любой работе сравнительно невысокой мощности (требующей до 50 % МПК) и при очень длительной работе на выносливость (требующей около 70 – 80 % МПК). Среди всех источников энергии жиры обладают наибольшей энергетической емкостью: при расходовании 1 моля АТФ выделяется около 10 ккал энергии, 1 моля КрФ – око-ло 10,5 ккал, 1 моля глюкозы при анаэробном расщеплении – около 50 ккал, а при окислении 1 моля глюкозы в аэробных условиях – около 700 ккал, при окислении 1 моля жиров – 2 400 ккал. Однако использование жиров при работах высокой мощности лимитируется трудностью доставки кислорода работающим тканям.

Работа мышц сопровождается выделением тепла. Теплообразова-ние происходит в момент сокращения мышц – начальное теплообразование (оно составляет всего одну тысячную всех энерготрат) и в период восстановления – запаздывающее теплообразование.

В обычных условиях при работе мышц тепловые потери составляют около 80 % всех энерготрат. Для оценки эффективности механической работы мышцы используют вычисление коэффициента полезного действия (кпд). Величина кпд показывает, какая часть затрачиваемой энергии используется на выполнение механической работы мышцы. Ее вычисляют по формуле

кпд = [А: (Е - е)] · 100 %,

где А – энергия, затраченная на полезную работу;

Е – общий расход энергии;

е – расход энергии в состоянии покоя за время, равное длительности работы.

У нетренированного человека кпд примерно 20 %, у спортсмена – 30 – 35 %, т.е. мышца использует на движение 20 – 35 % химической энергии, остальная часть в форме тепла передается кровью другим тканям и равномерно согревает организм. Вот почему на холоде человек старается больше двигаться – подогревает себя энергией мышц. Мелкие непроизвольные сокращения мышц вызывают дрожь – организм увеличивает образование тепла.

При ходьбе наибольший кпд отмечается при скорости 3,6 – 4,8 км/ ч, при педалировании на велоэргометре – при длительности цикла около 1 сек. С увеличением мощности работы и включением «ненужных» мышц кпд уменьшается. При статической работе, поскольку А = 0, эффективность работы оценивается по длительности поддерживаемого напряжения мышц.

Трехглавая плеча


Наружная бедра


Камбаловидная

84 %

67 % -






Рис . 24. Состав мышечных волокон в разных мышцах :

медленные; ,.*>%" - быстрые

V<>-

Материалы для самостоятельной подготовки

Вопросы к коллоквиуму и для самоконтроля

1. Какие виды мышц у позвоночных животных и человека Вы знаете?

2. Назовите функции скелетных мышц.

3. Перечислите нейроны, иннервирующие скелетные мышцы.

4. Что является функциональной единицей мышцы?

5. Что входит в состав двигательной единицы (ДЕ)?

6. Что называют мотонейронным пулом?

7. Дать характеристику больших и малых ДЕ.

8. В чем заключается правило Хеннемана?

9. Опишите структуру мышечного волокна.

10. Как устроены миофибриллы?

11. Что такое саркомер?

12. Чем можно объяснить, что в состоянии покоя мышца имеет поперечнополо-сатый вид в световом микроскопе?

13. Опишите строение актиновых и миозиновых нитей.

14. Какова роль потенциала действия в возникновении мышечного сокращения?

15. Опишите механизм сокращения, расслабления мышечного волокна.

16. Кем была открыта ферментативная активность миозина?

17. Укажите последовательность событий, ведущих к сокращению, а затем рас-слаблению мышечного волокна.

18. В чем заключается роль АТФ в механизмах мышечного сокращения?

19. Перечислите фазы одиночного сокращения мышцы.

20. В каких случаях происходит суммация сокращений? Что такое тетанус?

21. Какие формы тетануса Вы знаете?

22. От чего зависит сокращение целой мышцы?

23. В чем заключается метод электромиографии?

24. От каких факторов зависит амплитуда ЭМГ?

25. Что такое сила мышцы и от каких морфологических и физиологических факторов она зависит?

26. Перечислите типы мышечных волокон. Дайте их характеристику.

27. Назовите режимы работы мышц.

28. Опишите энергетику мышечного сокращения.

Восстановление фосфагенов (АТФ и КрФ)

Фосфагены, особенно АТФ, восстанавливаются очень быстро (рис. 25). Уже на протяжении 30 с после прекращения работы восстанавливается до 70% израсходованных фосфагенов, а их полное восполнение заканчивается за несколько минут, причем почти исключительно за счет энергии аэробного метаболизма, т. е. благодаря кислороду, потребляемому в быструю фазу О2-долга. Действительно, если сразу после работы жгутировать работающую конечность и таким образом лишить мышцы кислорода, доставляемого с кровью, то восстановление КрФ не произойдет.

Чем больше расход фосфагенов за время работы, тем больше требуется О2 для их восстановления (для восстановления 1 моля АТФ необходимо 3,45 л О2). Величина быстрой (алактатной) фракции О2-долга прямо связана со степенью снижения фосфагенов в мышцах к концу работы. Поэтому данная величина указывает на количество израсходованных в процессе работы фосфагенов.

У нетренированных мужчин максимальная величина быстрой фракции О2-долга достигает 2-3 л. Особенно большие величины этого показателя зарегистрированы у представителей скоростно-силовых видов спорта (до 7 л у высококвалифицированных спортсменов). В этих видах спорта содержание фосфагенов и скорость их расходования в мышцах прямо определяют максимальную и поддерживаемую (дистанционную) мощность упражнения.

Восстановление гликогена. По первоначальным представлениям Р. Маргария и др. (1933), израсходованный за время работы гликоген ресинтезируется из молочной кислоты на протяжении 1-2 ч после работы. Расходуемый в этот период восстановления кислород определяет вторую, медленную, или лактатную, фракцию О2-Долга. Однако в настоящее время установлено, что восстановление гликогена в мышцах может длиться до 2-3 дней

Скорость восстановления гликогена и количество его восстанавливаемых запасов в мышцах и печени зависит от двух основных факторов: степени расходования гликогена в процессе работы и характера пищевого рациона в период восстановления. После очень значительного (более 3/4 исходного содержания), вплоть до полного, истощения гликогена в рабочих мышцах его восстановление в первые часы при обычном питании идет очень медленно, и для достижения предрабочего уровня требуется до 2 суток. При пищевом рационе с высоким содержанием углеводов (более 70% суточного калоража) этот процесс ускоряется - уже за первые 10 ч в рабочих мышцах восстанавливается более половины гликогена, к концу суток происходит его полное восстановление, а в печени содержание гликогена значительно превышает обычное. В дальнейшем количество гликогена в рабочих мышцах и в.печени продолжает увеличиваться и через 2-3 суток после "истощающей" нагрузки может превышать предрабочее в 1,5-3 раза - феномен суперкомпенсации.

При ежедневных интенсивных и длительных тренировочных занятиях содержание гликогена в рабочих мышцах и печени существенно снижается ото дня ко дню, так как при обычном пищевом рационе даже суточного перерыва между тренировками недостаточно для полного восстановления гликогена. Увеличение содержания углеводов в пищевом рационе спортсмена может обеспечить полное восстановление углеводных ресурсов организма к следующему тренировочному занятию.

Устранение молочной кислоты. В период восстановления происходит устранение молочной кислоты из рабочих мышц, крови и тканевой жидкости, причем тем быстрее, чем меньше образовалось молочной кислоты во время работы. Важную роль играет также послерабочий режим. Так, после максимальной нагрузки для полного устранения накопившейся молочной кислоты требуется 60-90 мин в условиях полного покоя - сидя или лежа (пассивное восстановление). Однако, если после такой нагрузки выполняется легкая работа (активное восстановление), то устранение молочной Кислоты происходит значительно быстрее. У нетренированных людей оптимальная интенсивность "восстанавливающей" нагрузки - примерно 30-45% от МПК (например, бег трусцой), а. у хорошо тренированных спортсменов - 50-60% от МПК, общей продолжительностью примерно 20 мин.

Существует четыре основных пути устранения молочной кислоты:

  • 1) окисление до СО2 и ШО (так устраняется примерно 70% всей накопленной молочной кислоты);
  • 2) превращение в гликоген (в мышцах и печени) и в глюкозу (в печени) около 20%;
  • 3) превращение в белки (менее 10%); 4) удаление с мочой и потом (1-2%). При активном восстановлении доля молочной кислоты, устраняемой аэробным путем, увеличивается. Хотя окисление молочной кислоты может происходить в самых разных органах и тканях (скелетных мышцах, мышце сердца, печени, почках и др.), наибольшая ее часть окисляется в скелетных мышцах (особенно их медленных волокнах). Это делает понятным, почему легкая работа (в ней участвуют в основном медленные мышечные волокна) способствует более быстрому устранению лактата после тяжелых нагрузок.

Значительная часть медленной (лактатной) фракции О2-долга связана с устранением молочной кислоты. Чем интенсивнее нагрузка, тем больше эта фракция. У нетренированных людей она достигает максимально 5-10 л, у спортсменов, особенно у представителей скоростно-силовых видов спорта, - 15-20 л. Длительность ее - около часа. Величина и продолжительность лактатной фракции О2-долга уменьшаются при активном восстановлении.