Физические физиологические свойства сердечной мышцы. Сердечная мышца человека, ее особенности и функции

Автоматия - способность сердечной мышцы к ритмическому сокращению без всяких внешних воздействий под влиянием импульсов, возникающих в самом сердце. Благодаря автоматии автономное (извлеченное из организма) сердце способно некоторое время самостоятельно сокращаться. Импульсы в сердечной мышце возникают благодаря деятельности атипических мышечных волокон, заложенных в некоторых участках миокарда - внутри них спонтанно генерируются электрические импульсы определенной частоты, распространяющиеся затем по всему миокарду. Первый такой участок находится в области устьев полых вен и называется синусовым , или синоатриальным, узлом. Он производит импульсы с частотой 60-80 раз в минуту и является главным центром автоматии сердца. Второй участок находится в толще перегородки между предсердиями и желудочками и называется предсердно-желудочковым, или атриовентрикулярным , узлом. Третий участок - пучок Гиса - атипические волокна, лежащие в межжелудочковой перегородке. От пучка Гиса отходят тонкие волокна атипической ткани - волокна Пуркинье, разветвляющиеся в миокарде желудочков. Все участки атипической ткани способны самостоятельно генерировать импульсы; в синусовом узле их частота самая высокая, его называют водителем ритма первого порядка, другие центры автоматии подчиняются этому ритму. Совокупность всех центров автоматии составляют проводящую систему сердца, благодаря которой волна возбуждения, возникшая в синусном узле, последовательно распространяется по всему миокарду и обеспечивает последовательное сокращение отделов сердца.

Возбудимость сердечной мышцы проявляется в способности сердца приходить в состояние возбуждения под действием различных раздражителей (химических, механических, электрических и др.). Потенциал действия, возникающий в одной клетке, передается другим клеткам, что приводит к распространению возбуждения по всему сердцу.

Сократимость - способность полости сердца сокращаться, обусловленная свойством клеток миокарда отвечать на возбуждение сокращением. Это свойство сердечной мышцы позволяет сердцу выполнять механическую работу по перекачиванию крови по сосудам: при сокращении полости сердца давление крови в сердечных камерах возрастает, и кровь под давлением поступает в артерии. Работа сердечной мышцы подчиняется закону «все или ничего»: если на сердечную мышцу оказывать раздражающее действие различной силы, мышца каждый раз отвечает максимальным сокращением. Если сила раздражителя не достигает порогового значения, то сердечная мышца не отвечает сокращением.

В работе сердца как насоса выделяют три фазы, сокращение предсердий, сокращение желудочков и пауза, когда желудочки и предсердия одновременно расслаблены. Сокращение сердца называется систолой , расслабление - диастолой. Во время систолы предсердий кровь выталкивается в желудочки, так как обратный кровоток в вены невозможен из-за захлопывания клапанов, во время систолы желудочков кровь устремляется в большой и малый круги кровообращения (обратному току в предсердия препятствуют митральный и трехстворчатый клапаны, расположенные между предсердиями и желудочками), а за время диастолы камеры сердца находятся в расслабленном состоянии и вновь заполняются кровью. За одну минуту сердце взрослого здорового человека сокращается примерно 60-70 раз. Ритмичное чередование сокращения и расслабления каждого из отделов сердца обеспечивает неутомляемость сердечной мышцы.

Иннервация сердца очень сложна. Она осуществляется вегетативной нервной системой - блуждающим и симпатическими нервами, в составе которых имеются как чувствительные, так и двигательные волокна. В стенке самого сердца находятся нервные сплетения, состоящие из нервных узлов и нервных волокон. Двигательные нервы сердца осуществляют четыре основные функции: замедление, ускорение, ослабление и усиление деятельности сердца. Эти нервы относятся к вегетативной нервной системе. Таким образом, сердечная мышца, обладая способностью к самостоятельным сокращениям, подчиняется также «командам сверху» - регулирующему воздействию нервной системы, обеспечивающему оптимальную адаптацию сердечной деятельности потребностям организма в конкретной ситуации.

Сосудистая система. Кровеносные сосуды представляют собой систему полых эластичных трубок различного строения, диаметра и механических свойств, по которым протекает кровь. Сосуды подразделяются на артерии, вены и капилляры.

Артерии имеют толстые упругие стенки, состоящие из грех слоев. Наружный слой представляет собой соединительнотканную оболочку, средний слой состоит из гладкой мышечной ткани и содержит соединительнотканные эластические волокна, внутренний слой образован эндотелием, под которым расположена внутренняя эластическая мембрана. Эластические элементы артериальной стенки образуют единый каркас, работающий как пружина и обусловливающий эластичность артерий.

Разветвляясь, артерии переходят в артериолы , которые отличаются от артерий наличием только одного слоя мышечных клеток и могут регулировать скорость кровотока за счет сужения или расширения просвета. Артериола переходит в прекапилляр, в котором мышечные клетки разрознены и не составляют сплошного слоя. От него отходят многочисленные капилляры - самые мелкие кровеносные сосуды, которые соединяют артериолы с венулами (мелкими разветвлениями вен). Благодаря очень тонкой стенке капилляров в них происходит обмен различными веществами между кровью и клетками тканей. В зависимости от потребности в кислороде и других питательных веществах разные ткани имеют разное количество капилляров. Капилляры могут находиться в активном (открытом) и пассивном (закрытом) состоянии. При активизации обменных процессов или потребности в усиленной теплоотдаче объем крови, проходящей через орган, может увеличиваться за счет активизации дополнительного числа капилляров. В покое и при уменьшении теплоотдачи значительное количество капилляров переходит в пассивное состояние, уменьшая таким образом объем кровотока. Состояние капиллярной сети регулируется вегетативной нервной системой в зависимости от потребностей организма.

Сливаясь, капилляры переходят в посткапилляры , которые но строению аналогичны прекапилляру. Посткапилляры сливаются в венулы с просветом 40-50 мкм. Венулы объединяются в более крупные сосуды, несущие кровь к сердцу, - вены. Они, так же как и артерии, имеют стенки, состоящие из трех слоев, по содержат меньше эластических и мышечных волокон, поэтому менее упруги, их просвет поддерживается током крови. Вены имеют клапаны (полулунные складки внутренней оболочки), которые открываются по току крови, что способствует движению крови в одном направлении. Схематически строение кровеносных сосудов представлено на рис. 4.6.

Рис. 4.6.

Человек и все позвоночные животные имеют замкнутую кровеносную систему. Кровеносные сосуды сердечно-сосудистой системы образуют две основные подсистемы: большой и малый круги кровообращения (рис. 4.7).

Сосуды большого круга кровообращения соединяют сердце со всеми другими частями тела. Большой круг кровообращения начинается в левом желудочке, откуда выходит аорта, а заканчивается в правом предсердии, куда впадают полые вены. Как часть большого круга кровообращения выделяют третий (сердечный) круг, снабжающий кровью само сердце. Он состоит из двух венечных, или коронарных, артерий, отходящих от аорты, и впадает в правое предсердие через венечную пазуху.

Сосуды малого круга кровообращения переносят кровь от сердца к легким и обратно. Малый круг кровообращения начинается правым желудочком, из которого выходит легочный ствол, а заканчивается левым предсердием, в которое впадают легочные вены.

Рис. 4.7.

1 - сердце; 2 - малый (легочный) круг кровообращения; 3 - большой круг кровообращения

Возбудимость сердечной мышцы неодинакова во всех участках сердца. Наиболее возбудимым синусоатриальным узел. Возбудимость пучка Гиса значительно меньше. Хотя во время сокращения мышца сердца возбудима. Но в этот период, который почти совпадает с систолой, самые сильные искусственные раздражения сердца не вызывают нового сокращения вследствие «конфликта двух сильных возбуждений, слишком близко поставленных одно к другому во времени в одном и том же субстрате» (А. А. Ухтомский). Это состояние полное потери возбудимости во время сокращения сердца обозначается как абсолютная рефрактерность. После этого во время расслабления мышцы сердца при раздражении сердца ударом индукционного электрического тока, вследствие изменения интервала времени между двумя возбуждениями и изменения функционального состояния сердца, может быть получено вне очереди, но более слабое сокращение.

Этот второй период неполной возбудимости во время расслабления сердца обозначается как относительная рефрактерность. Непосредственно после периода относительной рефрактерности наблюдается кратковременное повышение возбудимости - экзальтационная фаза. Продолжительность абсолютной и относительной рефрактерности зависит от длительности- сердечного цикла. Период абсолютной рефрактерности синусоатриального узла у человека доходит до 0,3 с., предсердий — от 0,06 до 0,12 с., а желудочков - от 0,3 до 0,4 с.

Благодаря продолжительной рефрактерности сердце отвечает на продолжительное раздражение ритмическими сокращениями и в обычных условиях на может прийти в состояние тетануса.

Если на желудочек сердца холоднокровного животного нанести раздражение до прихода очередного автоматического импульса, т. е. в периоде относительной рефрактерности, то возникает преждевременное сокращение сердца - экстрасистола, за которым следует компенсаторная пауза, по продолжительности превышающая обычную.

Экстрасистолы возникают при изменениях в проводящей системе или в мышце сердца. Влияние на изменение возбудимости обозначается как батмотропное.

Сокращение сердечной мышцы не усиливается с увеличением раздражения. Если непосредственно наносить раздражение на сердечную мышцу, наращивая каждый раз величину раздражения, то обнаруживается следующий факт. Вначале при слабых раздражениях мышца па них не реагирует сокращением, затем при некотором повышении величины раздражения она сокращается. Это сокращение максимальное. Дальнейшее увеличение силы раздражения уже не увеличивает сокращения сердечной мышцы (Г. Боудич, 1871).

Однако это только частный случай, а не правило, так как высота сокращения мышцы сердца («все») изменяется и зависит, от ее возбудимости и лабильности, т. е. от ее функционального состояния. «Ничего» также не существует, так как при подпороговых раздражениях возникает возбуждение, которое суммируется при определенной частоте раздражений.

Величина наибольшего сокращения сердечной мышцы зависит от уровня обмена веществ в ней. Влияние на силу сердечных сокращений обозначается как инотропное.

В процессе филогенеза выработалась способность сердечной мышцы увеличивать силу своих сокращений в зависимости от увеличения количества притекающей к сердцу крови и повышения давления крови в артериальной системе.

Увеличение притока крови к сердцу и повышение кровяного давления в физиологических условиях вызываются мышечной работой и некоторыми эмоциями.

Как увеличивает сердце силу своих сокращений при повышенных нагрузках?

Сила сокращений сердца увеличивается благодаря увеличению начальной длины мышечных волокон (Старлинг, 1916).

Мышечные волокна имеют определенную длину при диастоле сердца во время покоя организма, перед началом сокращения сердца (начальная длина). При увеличении притока крови к сердцу и при затруднениях оттока, вызванных повышением кровяного давления, сердце в диастоле от переполнения полости кровью растягивается сильнее, следовательно, начальная длина мышечных волокон сердца увеличивается. Чем больше приток крови к сердцу или чем больше кровяное давление, затрудняющее отток крови, тем больше начальное растяжение мышечных волокон.

На изолированных мышцах установлено, что сокращении скелетной и сердечной мышц прямо пропорциональна начальниц длине мышечных волокон. Чем больше начальная длина волокон, тем сильнее сокращение. Поэтому при увеличении начальной длины волокон сердца оно сильнее сокращается во время систолы и благодаря этому увеличивается количество выбрасываемой .

Большое значение имеет кровоснабжение и питание сердечной мышцы. Чем лучше питание мышцы, тем меньше она предварительно растягивается.

В естественных условиях при отсутствии дополнительного растяжения сердца увеличение сокращений - результат усиления в сердечном мускуле под влиянием нервной системы (трофическое влияние).

Когда сердечная мышца утомляется, то в сердце падает и оно растягивается. Способность сердца производить прежнюю работу при утомлении зависит от степени растяжения его мышечных волокон.

Степень растяжения сердца определяется толщиной и состоянием сердечной мышцы. Максимально сердце может расшириться до перикарда, который, таким образом, обусловливает предельное расширение сердца.

СТРОЕНИЕ СТЕНКИ СЕРДЦА

Стенка сердца состоит из трех слоев: внутреннего - эндокарда , среднего -миокарда и наружного - эпикарда .

Эндокард выстилает изнутри поверхность камер сердца, он образован особым видом эпителиальной ткани -эндотелием . Эндотелий имеет очень гладкую, блестящую поверхность, что обеспечивает уменьшение трения при движении крови в сердце.

Миокард составляет основную массу стенки сердца.

Он образован поперечно -полосатойсердечной мышечной тканью , волокна которой в свою очередь располагаются в несколько слоев. Миокард предсердий значительно тоньше, чем миокард желудочков. Миокард левого желудочка в три раза толще, чем миокард правого желудочка. Степень развитости миокарда зависит от величины работы, которую выполняют камеры сердца. Миокард предсердий и желудочков разделен слоем соединительной ткани (фиброзное кольцо), что дает возможность поочередного сокращения предсердий и желудочков.

Эпикард - это особая серозная оболочка сердца, образованная соединительной и эпителиальной тканью.

ОКОЛОСЕРДЕЧНАЯ СУМКА (ПЕРИКАРД)

Это своеобразный замкнутый мешок, в который заключено сердце. Сумка состоит из двух листков. Внутренний листок срастается по всей поверхности с эпикардом. Наружный листок как бы покрывает сверху внутренний листок. Между внутренним и наружным листком имеется щелевидная полость -перикардиальная полость ), заполненная жидкостью. Сама сумка и жидкость, находящаяся в ней, выполняют защитную роль и уменьшают трение сердца при его работе. Сумка способствует фиксации сердца в определенном положении.

КЛАПАНЫ СЕРДЦА

Работа клапанов сердца обеспечивает одностороннее движение крови в сердце.

К собственно сердечным клапанам относятся створчатые клапаны , располагающиеся на границе предсердий и желудочков. В правой половине сердца находитсятехстворчатый клапан , в левой -двустворчатый (митральный). Створчатый клапан состоит из трех элементов: 1) створки , имеющей форму купола, и образованной плотной соединительной тканью, 2) сосочковой мышцы, 3) сухожильных нитей , натянутых между створкой и сосочковой мышцей. При сокращении желудочков створчатые клапаны закрывают просвет между предсердием и желудочком. Механизм работы этих клапанов следующий: при повышении давления в желудочках кровь устремляется в предсердия, поднимая створки клапанов, и они смыкаются, перерывая просвет между предсердием и желудочком; створки не выворачиваются в сторону предсердий, т.к. их удерживают сухожильные нити, натягивающиеся за счет сокращения сосочковой мышцы.



На границе желудочков и сосудов, отходящих от них (аорта и легочный ствол), располагаются полулунныеклапаны , состоящие из полулунных заслонок . В названных сосудах по три таких заслонки. Каждая полулунная заслонка имеет форму тонкостенного кармашка, вход в который открыт в сторону сосуда. Когда кровь изгоняется из желудочков, полулунные клапаны прижаты к стенкам сосуда. Во время расслабления желудочков кровь устремляется в обратном направлении, наполняет "кармашки", они отходят от стенок сосуда и смыкаются, перекрывая просвет сосуда, не пропуская кровь в желудочки. Полулунный клапан, располагающийся на границе правого желудочка и легочного ствола, называется пульмональный клапан , на границе левого желудочка и аорты - аортальный клапан.

Функции сердца

Функция сердца состоит в том, что миокард сердца во время сокращения перекачивает кровь из венозного в артериальное сосудистое русло. Источником энергии, необходимой для движения крови по сосудам является работа сердца. Энергия сокращения миокарда сердца преобразуется в давление, сообщаемое порции крови, выталкиваемой из сердца во время сокращения желудочков. Давление крови - это сила, которая расходуется на преодоление силы трения крови о стенки сосудов. Разность давлений в разных участках сосудистого русла - главная причина движения крови. Движение крови в сердечно-сосудистой системе в одном направлении обеспечивается работой сердечных и сосудистых клапанов.

Свойства сердечной мышцы

К основным свойствам сердечной мышцы относятся автоматия, возбудимость, проводимость исократимость .

1. Автоматия - это способность к ритмическому сокращению без всяких внешних воздействий под влиянием импульсов, возникающих в самом сердце. Ярким проявлением этого свойства сердца является способность извлеченного из организма сердца при создании необходимых условий сокращаться в течение часов и даже суток. Природа автоматии до сих пор до конца не выяснена. Но однозначно ясно, что возникновение импульсов связано с деятельностью атипических мышечных волокон , заложенных в некоторых участках миокарда. Внутри атипических мышечных клеток спонтанно генерируются электрические импульсы определенной частоты, распространяющиеся затем по всему миокарду. Первый такой участок находится в области устьев полых вен и называется синусный , или синоатриальныйузел . В атипических волокнах этого узла спонтанно возникают импульсы с частотой 60-80 раз в минуту. Он является главным центром автоматии сердца. Второй участок находится в толще перегородки между предсердиями и желудочками и называется предсердно-желудочковый , или атриовентрикулярный узел . Третий участок - это атипические волокна, составляющие пучок Гиса , лежащий в межжелудочковой перегородке. От пучка Гиса берут начало тонкие волокна атипической ткани - волокна Пуркинье , ветвящиеся в миокарде желудочков. Все участки атипической ткани способны генерировать импульсы, но их частота самая высокая в синусном узле, поэтому его называют водителем ритма первого порядка (пейсмекером первого порядка) , и все другие центры автоматии подчиняются этому ритму.

Совокупность всех уровней атипической мышечной ткани составляют проводящую систему сердца . Благодаря проводящей системе волна возбуждения, возникшая в синусном узле, последовательно распространяется по всему миокарду.

2. Возбудимость сердечной мышцы заключается в том, что под действием различных раздражителей (химических, механических, электрических и др.) сердце способно приходить в состояние возбуждения. В основе процесса возбуждения лежит появление отрицательного электрического потенциала на наружной поверхности мембран клеток, подвергшихся действию раздражителя. Как и в любой возбудимой ткани, мембрана мышечных клеток (миоцитов) поляризована. В покое она снаружи заряжена положительно, изнутри - отрицательно. Разность потенциалов определяется различной концентрацией ионов N а + и К + по обе стороны мембраны. Действие раздражителя увеличивает проницаемость мембраны для ионов К + и Nа + , происходит перестройка мембранного потенциала(калий - натриевый насос ), в результате возникает потенциал действия, распространяющийся и на другие клетки. Таким образом происходит распространение возбуждения по всему сердцу.

Импульсы, возникшие в синусном узле, распространяются по мускулатуре предсердий. Дойдя до атриовентрикулярного узла, волна возбуждения распространяется по пучку Гиса, а затем по волокнам Пуркинье. Благодаря проводящей системе сердца наблюдается последовательное сокращение частей сердца: сначала сокращаются предсердия, затем желудочки (начиная с верхушки сердца волна сокращения распространяется к их основанию). Особенность атриовентрикулярного узла - проведение волны возбуждения только в одном направлении: от предсердий к желудочкам.

3. Сократимость - это способность миокарда сокращаться. Оно основано на способности самих клеток миокарда отвечать на возбуждение сокращением. Это свойство сердечной мышцы определяет способность сердца выполнять механическую работу. Работа сердечной мышцы подчиняется закону "все или ничего" .Суть этого закона состоит в следующем: если на сердечную мышцу наносить раздражающее действие различной силы, мышца отвечает каждый раз максимальным сокращением ("все "). Если сила раздражителя не достигает порогового значения, то сердечная мышца не отвечает сокращением ("ничего ").

Кардиомиоциты изолированы друг от друга и контактируют в области вставочных дисков, где соприкасаются мембраны соседних кардиомиоциов.

Коннесксоны- в мембране соседних клеток образуются эти структуры за счет белков конексинов. Коннексон окружают 6 таких белков, внутри коннексона - канал, который позволяет проходит ионам, таким таким образом электрический ток распространяется от одной клетки к другой. “f область имеет сопротивление 1,4 ом на см2(низкое). Возбуждение охватывает кардиомиоциты одновременно. Они функционирую как функциональный сенсициы. Нексусы очень чувствительны к недостатку кислорода, к действию катехоламинов, к стрессовым ситуациям, к физической нагрузке. Это может вызывать нарушение проведения возбуждения в миокарде. В экспериментальных условиях нарушение плотных контактов моно получить при помещении кусочков миокарда в гипертонический раствор сахарозы. Для ритмической деятельности сердца важна проводящая система сердца - эта система состоит из комплекса мышечных клеток, образующих пучки и узлы и клетки проводящей системы отличаются от клеток рабочего миокарда - они бедны миофибриллами, богаты саркоплазмой и содержат высокое содержание гликогена. Эти особенности при световой микроскопии делают их более светлыми с малой поперечной исчерченностью и они были названы атипическими клетками.

В состав проводящей системы входят:

1. Синоатриальный узел(Кейт-Флека)(в парвом предсердии у места впадения верхней полой вены)

2. Атрии-вентрикулярный узел(Ашоф-Тавара)(лежит в правом предсердии на границе предсердие-желудочек - задняя стенка правого предсердия)

Эти два узла связаны внутрипредсердными трактами -

3. Предсердные тракты

Пердний с ветвью Бахмена к левому предсердию

Средний тракт(Венкебаха)

Задний тракт(Тореля)

4. Пучок Гиса(отходит от атриовентрикулярного узла. Проходит через фиброзную ткань и обеспечивает связь миокарда предсердия с миокардом желудочка. Проходит в межжелудочковую перегородку, где разделяется на правую и илевую ножку пучка Гиса)

5. Правая и левая ножки пучка Гиса(они идут вдоль межжелудочковой перегородки. Левая ножка имеет две ветви - переднюю и заднюю. Конечными разветвлениями будут являтся волокна Пуркинье)

6. Волокна Пуркинье

В проводящей системе сердца, которая образована видоизмененными типами мышечных клеток имеются три вида клеток - пейсмекерны(P), переходные, клетки Пуркинье.

1. P -клетки . Находятся в сино-артриальном узле, меньше в атриовентрикулярном ядре. Это самые мелкие клетки, в них мало т - фибрилл и митохондрий, т-сстема отстутствует, l. система развита слабо. Основной функцией этих клеток является генерация потенциала действия за счет врожденного свойства медленной диастолической деполяризации. В них происходит периодическое снижение мембранного потенциала, которое приводит их к самовозбуждению.

2. Переходные клетки осуществляют предачу возбуждения в области атривентрикуярного ядра. Они обнаруживаются между P клетками и клетками Пуркинье. Эти клетки вытянутой формы, у них отсутствует сарко-плазматический ретикулум. Эти клетки облают замедленной скоростью проведения.

3. Клетки Пуркинье широкие и короткие, в них больше миофибрилл, лучше развит саркоплазматический ретикулум, T система отсутствует.

Электрические свойства клеток миокарда. Клетки миокарда, как рабочего, так и проводящей системы обладают мембранным потенциалам покоя и снаружи мембрана кардиомиоцита заряжена «+», а внутри «-». Это обусловлено ионной ассиметрией - внутри клеток в 30 раз больше ионов калия, а снаружи в 20-25 раз больше ионов натрия. Это обеспечивается постоянной работой натриево-калиевым насосом. Измерение мембранного потенциала показывает, что клетки рабочего миокарда имеетпотенциал - 80-90 мВольт. В клетках проводящей системы - 50-70 мВольт. При возбуждении клеток рабочего миокарда возникает потенциал действия(5 фаз) - 0, 1, 2, 3, 4.

0. При возбуждении возникает процесс деполяризации кардиомиоцитов, что связано с открытием натриевых каналов и повышение проницаемости для ионов натрия, которые устремляются внутрь кардиомиоцитов. При снижении мембранного потенциала о 30-40 милиВольт происходить открытие медленных натриево-кальцевых каналов. Через них могут входить натрий и дополнительно кальций. Это обеспечивает процесс деполяризации и овершут(реверсия) 120 мВольт.

1. Начальная фаза реполяризации . Закрытие натриевых каналов и некоторое повышение проницаемости к ионам хлора.

2. Фаза Плато . Процесс деполяризации затормаживается. Связана с усилением выхода кальция внутрь. Он задерживает восстановление заряда на мембране. При возбуждении снижается калиевая проницаемость(в 5 раз). Калий не может выходить из кардиомиоцитов.

3. Когда кальцевые каналы закрываются происходит фаза быстрой реполяризации . За счет восстановления поляризации к ионам калия и мембранный потенциал возвращается к исходному уровню и наступает диастолический потенциал

4. Диастолический потенциал постоянно стабилен

В клетках проводящей системы есть отличительные особенности потенциала.

1. Сниженный мембранный потенциал в диастолический период(50-70мВ)

2. Четвертая фаза не является стабильной и отмечается постепенное снижение мембранного потенциала к пороговому критическому уровню деполяризации и в диастолу постепенно медленно продолжает снижаться достигая критического уровня деполяризации при котором произойдет самовозбуждение П-клеток. В P-клетках происходит усиление проникновения ионов натрия и снижение выхода ионов калия. Повышается проницаемость ионов кальция. Эти сдвиги в ионном составе приводят к тому, что мембранный потенциал в P-клетках снижается до порогового уровня и p-клетка самовозбуждается обеспечивая возникновение потенциала действия. Плохо выражена фаза Плато. Фаза ноль плавно переходи ТВ процесс реполяризации, который восстанавливает диастолический мембранный потенциал, а дальше цикл повторяется вновь и P-клетки переходят в состояние возбуждения. Наибольшой возбудимостью обладают клетки сино-атриального узла. Потенциал в нем особо низок и скорость диастолической деполяризации наиболее высок.. Это будет влиять на частоту возбуждения. P- клетки синусного узла генерируют частоту до 100 ударов в мин. Нервная система(симпатическая система) подавляют действие узла(70 ударов). Симпатическая система может повышать автоматию. Гуморальные факторы- адреналин, норадреналин. Физические факторы - механический фактор - растяжение, стимулируют автоматию, согревание, тоже увеличивает автоматию. Все это применяется в медицине. На этом основано мероприятие прямого и непрямого массажа сердца. Область атриовентрикулярного узла тоже обладает автоматией. Степень автоматии атриовентрикулярного узла выражена значительно меньше и как правило она в 2 раза меньше, чем в синусном узле - 35-40. В проводящей системе желудочков импульсы тоже могут возникать(20-30 в минуту). ПО ходу проводящей системы возникает постипенное снижение уровня автоматии, что получило название градиента автоматии. Синусный узел - центр автоматии первого порядка.

Станеус - ученый . Наложение лигатур на сердце лягушки(3х камерное). У правого предсердия имеется венозныц синус, где лежит аналог синусного узла человека. Станеус накладывал 1ую лигатуру между венозным синусом и предсердием. Когда лигатура затягивалась сердце прекращала свою работу. Вторая лигатура накладывалась Станеусом между предсердиями и желудочком. В этой зоне находится аналог атрии-вентрикулярного узла, но 2ая лигатура имеет задачу не отделения узла, а его механическое возбуждение. Ее накладывают постепенно, возбуждая атриовентрикулярный узел и при этом возникает сокраение сердца. Желудочки получают вновь сокращаться под действием атрии-вентрикулярного узла. С частотой в 2 раза меньше. Если наложить 3ю лигатуру , которая отделяет атривентрикулярный узел возникает остановка сердца. Все это дает нам возможность показать, что синусный узел - водитель ритма, атриовентрикулярный узел обладает меньшей автоматией. В проводящей системе существуе убывающий градиент автоматии.

Физиологические свойства сердечной мышцы.

Возбудимость, проводимость,сократимость

Под возбудимостью сердечной мышцы понимается ее свойство отвечать на действие раздражителей пороговой или над пороговой силы процессом возбуждения. Возбуждение миокарда можно получить на действие химических, механических, температурных раздражений. Эта способность отвечать на действие разных раздражителей используется при массаже сердца(механическое), введение адреналина, кардиостимуляторы. Особенностью реакции сердца на действие раздражителя, играет то что действует по принципу «Все или ничего». Сердце отвечает максимальным импульсом уже на пороговый раздражитель. Продолжительность сокращения миокарда в желудочкх составляет 0,3с. Это обусловлено длительным потенциалом действия, который тоже длится до 300мс. Возбудимость сердечной мышцы может падать до 0 - абсолютно рефрактерная фаза. Никакие раздражители не могут вызвать повторного возбуждения(0,25-0,27с). Сердечная мышца абсолютно невозбудима. В момент расслабления(диастолы)абсолютная рефрактерная переходит в относительную рефрактерную 0,03-0,05с. В этот момент можно получить повторное раздражение на над пороговые раздражители. Рефрактерный период сердечной мышцы длится и совпадает по времени столько, сколько длится сокращение. Вслед за относительной рефрактерностью имеется небольшой период повышенной возбудимости - возбудимость ставновится выше исходного уровня - супер нормальная возбудимость. В эту фазу сердце особо чувствительно к воздействию других раздражителей(смогут возникать др. раздражители или экстрасистолы- внеочередные систолы). Наличие длительного рефрактерного периода должно оградить сердце от повторных возбуждений. Сердце выполняет насосную функцию. Промежуток между нормальным и внеочередным сокращением укорачивается. Пауза может быть нормальной или удлиненной.Удлиненную паузу называют компенсаторной. Причина экстрасистолов - возникновение других очагов возбуждения - атриовентрикулярный узел, элементы желудочковой части проводящей системы, клетки рабочего миокарда, Это может быть связано с нарушением кровоснабжением, нарушением проведения в сердечной мышцей, но все дополнительные очаги - эктопические очаги возбуждения. В зависимости от локализации - разные экстрасистолы - синусные, предсредные, атриовентрикулярные. Экстрасистолы желудочка сопровождаются удлиненной компенсаторнйо фазой. 3 дополнительное раздражение - причина внеочередного сокращения. Вовремя экстрасистола сердце утрачивает возбудимость. К ним приходит очередной импульс из синусного узла. Пауза нужна для восстановления нормального ритма. Когда в сердце происходит сбой сердце пропускает одно нормальное сокращение и дальше возвращается к нормальному ритму.

Проводимость - способность проводить возбуждение. Скорость проведения возбуждения в разных отделах неодинакова. В миокарде предсердий - 1 м/c и время проведения возбуждения занимает 0,035 с

Скорость проведения возбуждения

Миокард 1 м/c 0,035

A-V узел 0,02 - 0-05 м в с. 0,04 с

Проведение система желудочков - 2-4,2 м в с. 0,32

В сумме от синусного узла до миокарда желудочка - 0,107 с

Миокард желудочка - 0,8-0,9 м в с

Нарушение проведения сердца приводит к развитию блокад - синусной, атривентрикулярной, пучка гиса и его ножек. Синусный узел может выключится.. Включится ли атривентрикулярный узел как водитель ритма? Синусные блокады встречаются редко. Больше в атриовентрикулярных узлах. Удлиение задержки(больше 0,21с) возбуждение доходит до желудочка, хоть и замедленно. Выпадение отдельных возбуждений, которые возникают в синусном узле НАПРИМЕР из 3 доходит только 2 - вторая степень блокады. 3я блокада - предсердия и желудочки работают несогласованно. Блокада ножек и пучка - блокада желудочков. Чаще встречаются блокады ножек пучка Гиса и соответственно желудочек запаздывает за другим.

Сократимость

Кардиомиоциты включают фибриллы, саркомеры. Есть продольные трубочки и Т трубочки наружной мембраны, котоыре входят внутрь на уровне мембраны я. Они широкие. Сократительная фугкция кардиомиоцитов связана с белками миозином и актином. На тонких актиновых белках - система тропонин и тропомиозин. Это не дает головкам миозин сцепляется с головками миозина. Снятие блокировки - ионами кальция. По т трубочкам открываются кальцевые каналы. Повышение кальция в саркоплазме снимает тормозной эффект актина и миозина. Мостики миозина перемещают тонике нити к центру. Миокард подчиняется в сократительной функции 2м законам - все или ничего. Сила сокращения зависит от исходной длины кардиомиоцитов - Франк и Старалинг. Если миоциты предварительно растянуты, то они отвечают большей силой сокращения. Растяжение зависит от наполнения кровью. Чем больше- тем сильней. Этот закон формулируют как - систола есть функция диастолы. Это важный приспособительный механизм. Это синхронизирует работу правого и левого желудочка.

Сердце представляет собой полый орган. Его размер примерно с кулак человека. Сердечная мышца формирует стенки органа. В нем присутствует перегородка, разделяющая его на левую и правую половины. В каждой из них сеть желудочек и предсердие. Направление движения крови в органе контролируется посредством клапанов. Далее рассмотрим подробнее свойства сердечной мышцы.

Общие сведения

Сердечная мышца - миокард - составляет основную часть массы органа. Она состоит из трех типов ткани. В частности, выделяют: атипический миокард проводящей системы, волокна предсердия и желудочков. Размеренное и координированное сокращение сердечной мышцы обеспечивается проводящей системой.

Строение

Сердечная мышца отличается сетчатой структурой. Она формируется из волокон, переплетенных в сеть. Связи между волокнами устанавливаются за счет присутствия боковых перемычек. Таким образом, сеть представлена в виде узкопетлистого синцития. Между волокнами сердечной мышцы присутствует соединительная ткань. Она отличается рыхлой структурой. Кроме этого, волокна обвиты густой сетью капилляров.

Свойства сердечной мышцы

В структуре присутствуют вставочные диски, представленные в виде мембран, отделяющих клетки волокон друг от друга. Здесь следует отметить важные особенности сердечной мышцы. Отдельные кардиомиоциты, присутствующие в структуре в большом количестве, соединены друг с другом параллельно и последовательно. Клеточные мембраны сливаются так, что формируют щелевые контакты высокой проницаемости. Через них беспрепятственно диффундируют ионы. Таким образом, одна из особенностей миокарда состоит в наличии свободного перемещения ионов по внутриклеточной жидкости по ходу всего миокардиального волокна. Это обеспечивает беспрепятственное распределение потенциалов действия от одной клетки к другой сквозь вставочные диски. Из этого следует, что сердечная мышца - это функциональное объединение огромного количества клеток, имеющих тесную взаимосвязь друг с другом. Она настолько сильна, что при возбуждении только одной клетки провоцирует распространение потенциала на все остальные элементы.

Миокардиальные синцития

В сердце их два: предсердный и желудочковый. Все отделы сердца отделены друг от друга фиброзными перегородками с отверстиями, снабженными клапанами. Непосредственно через ткань стенок возбуждение от предсердия к желудочку перейти не может. Передача осуществляется посредством специального атриовентрикулярного пучка. Его диаметр - несколько миллиметров. Состоит пучок из волокон проводящей структуры органа. Присутствие в сердце двух синцитий способствует тому, что предсердия сокращаются раньше желудочков. Это, в свою очередь, имеет важнейшее значение для обеспечения эффективной насосной деятельности органа.

Болезни миокарда

Работа сердечной мышцы может нарушаться вследствие различных патологий. В зависимости от провоцирующего фактора, выделяют специфические и идиопатические кардиомиопатии. Болезни сердца могут быть также врожденными и приобретенными. Существует еще одна классификация, в соответствии с которой различают рестриктивную, дилатационную, конгестивную и гипертрофическую кардиомиопатии. Рассмотрим их вкратце.

Гипертрофическая кардиомиопатия

На сегодняшний день специалистами выявлены мутации генов, провоцирующие данную форму патологии. Для гипертрофической кардиомиопатии характерно утолщение миокарда и изменение его структуры. На фоне патологии мышечные волокна увеличиваются в размерах, "скручиваются", приобретая странные формы. Первые симптомы заболевания отмечаются в детском возрасте. Основными признаками гипертрофической кардиомиопатии считаются болезненность в груди и одышка. Также наблюдается неравномерность сердечного ритма, на ЭКГ обнаруживаются изменения в сердечной мышце.

Конгестивная форма

Это достаточно распространенный тип кардиомиопатии. Как правило, заболевание возникает у мужчин. Распознать патологию можно по признакам сердечной недостаточности и нарушениям в сердечном ритме. У некоторых пациентов отмечается кровохарканье. Патологию также сопровождает боль в районе сердца.

Дилатационная кардиомиопатия

Эта форма заболевания проявляется в виде резкого расширения во всех камерах сердца и сопровождается снижением сократительной способности левого желудочка. Как правило, дилатационная кардиомиопатия возникает в сочетании с гипертонической болезнью, ИБС, стенозом в аортальном отверстии.

Рестриктивная форма

Кардиомиопатия этого типа диагностируется крайне редко. Причиной патологии является воспалительный процесс в сердечной мышце и осложнения после вмешательства на клапанах. На фоне заболевания происходит перерождение миокарда и его оболочек в соединительную ткань, отмечается замедленное наполнение желудочков. У пациента отмечается одышка, быстрая утомляемость, пороки клапанов и сердечная недостаточность. Крайне опасной рестриктивная форма считается для детей.

Как укрепить сердечную мышцу?

Существуют различные способы это сделать. Мероприятия включают в себя коррекцию режима дня и питания, упражнения. В качестве профилактики после консультации с врачом можно начать принимать ряд препаратов. Кроме этого, есть и народные методы укрепления миокарда.

Физическая активность

Она должна быть умеренной. Физическая активность должна стать неотъемлемым элементом жизни любого человека. При этом нагрузка должна быть адекватной. Не стоит перегружать сердце и истощать организм. Оптимальным вариантом считаются спортивная ходьба, плавание, езда на велосипеде. Упражнения рекомендуется проводить на свежем воздухе.

Ходьба

Она превосходно подходит не только для укрепления сердца, но и для оздоровления всего организма. При ходьбе задействована практически вся мускулатура человека. При этом сердце дополнительно получает умеренную нагрузку. По возможности, особенно в молодом возрасте, стоит отказаться от лифта и преодолевать высоту пешком.

Образ жизни

Укрепление сердечной мышцы невозможно без корректировки режима дня. Для улучшения деятельности миокарда необходимо отказаться от курения, дестабилизирующего давление и провоцирующего сужение просвета в сосудах. Кардиологи также не рекомендуют увлекаться баней и сауной, поскольку пребывание в парной существенно увеличивает сердечные нагрузки. Необходимо также позаботиться и о нормальном сне. Спать следует ложиться вовремя и отдыхать достаточное количество часов.

Диета

Одним из важнейших мероприятий в вопросе укрепления миокарда считается рациональное питание. Следует ограничить количество соленой и жирной пищи. В продуктах должны присутствовать:

  • Магний (бобовые, арбузы, орехи, гречка).
  • Калий (какао, изюм, виноград, абрикосы, кабачки).
  • Витамины Р и С (клубника, черная смородина, перец (сладкий), яблоки, апельсины).
  • Йод (капуста, творог, свекла, морепродукты).

Негативное воздействие на деятельность миокарда оказывает холестерин в высоких концентрациях.

Психоэмоциональное состояние

Укрепление сердечной мышцы может осложняться различными неразрешенными проблемами личного либо рабочего характера. Они могут спровоцировать перепады давления и нарушения ритма. Следует по возможности избегать стрессовых ситуаций.

Препараты

Существует несколько средств, способствующих укреплению миокарда. К ним, в частности, относят такие препараты, как:

  • "Рибоксин". Его действие направлено на стабилизацию ритма, усиление питания мышцы и коронарных сосудов.
  • "Аспаркам". Этот препарат представляет собой магниево-калиевый комплекс. Благодаря приему средства нормализуется электролитный обмен, устраняются признаки аритмии.
  • Родиола розовая. Это средство улучшает сократительную функцию миокарда. При приеме данного препарата следует соблюдать осторожность, поскольку он обладает способностью к возбуждению нервной системы.